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Slowing light in x „2… photonic crystals
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A study of parametric nonlinear frequency down-conversion in photonic crystals reveals that under suitable
conditions the probe field can be slowed down to approximately 11 m/s. The effect arises as a result of the
simultaneous availability of global phase-matching conditions, field localization, and gain experienced by the
probe beam. Together, these effects conspire to yield tunneling velocities previously reported only for coher-
ently resonant interactions, i.e., electromagnetic induced transparency, in Bose-Einstein condensates, hot
atomic gases, and doped crystals.
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Recent experiments have shown the reduction of
group velocity of light pulses to 17 m/s in a Bose condens
of ultracold sodium atoms@1#, 90 m/s in a hot rubidium gas
@2#, and 45 m/s in a Pr-doped Y2SiO5 crystal@3#. The effect
is often referred to as light trapping, and it involves a re
nant interaction between a control and a signal beam, tu
such that quantum coherence is established between a
cited state and two nearly degenerate ground states@1–3#.
The signal beam experiences an effective dispersion s
that its group velocity becomes a minimum in a region
transparency @electromagnetically induced transparen
~EIT!#.

In this article we show that light may also be slow
down to velocities of only a few meters per second as a re
of a parametric down-conversion process in a o
dimensional~1D! photonic crystal~PC!. Rather than relying
on quantum mechanical interactions between atomic le
resonant with the incident light, the phenomenon we desc
occurs as a result of the geometrical confinement of li
within a structure of finite length followed by the onset
nonlinear gain. This process therefore begins purely as
interferometric phenomenon that manifests itself initia
with the creation of classical Fabry-Pe´rot-like transmission
resonances@see inset~b! of Fig. 1#. Then we allow two
quasimonochromatic beams~or pulses whose frequenc
bandwidth is much narrower than the resonance bandwid!,
a weak fundamental frequency~FF!, and a much more in-
tense second harmonic~SH! field, to enter ax (2) PC. Finally,
we take advantage of the enhancement of quadratic inte
tions due to the simultaneous availability of high field loc
ization and robust, exact phase-matching conditions@4,5# to
amplify the FF. As a result, the FF pulse can slow down
just a few meters per second.

To illustrate the dynamics just described, we write t
coupled mode equations that govern the interaction of
linearly polarized, quasimonochromatic waves, one tune
the FFv, and the other tuned at the SH frequency 2v, in a
1D finite structure@6,7#:
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where pj v
(k,l )5^F j v

(k)u p̂ j vF j v
( l )& for j 51,2 and k,l 51,2,

G (v,n)
(k,l ) 5^Fv

(n)ud(2)F2v
(k)Fv

( l )* &, G (2v,n)
(k,l ) 5^F2v

(n)ud(2)Fv
(k)Fv

( l )&
for n,k,l 51,2. The solutions for the electric field
can be expressed as follows:Ej v5Aj v

(1)(z)F j v
(1)(z)

1Aj v
(2)(z)F j v

(2)(z), whereAj v
(6) are the complex amplitude

of the electric field. Equations~1! can be derived from a firs
order multiple scale expansion performed on the nonlin
Helmholtz equations@6,7#. The reader interested in the de
tails of the derivation can consult Ref.@6#. $F j v

(6)% are the
left-to-right ~LTR, 1! and right-to-left ~RTL, 2! linear
modes, which can be calculated independently using
standard linear matrix-transfer technique, assuming a z
nonlinear coupling coefficient and an electric field of unita
amplitude incident from either the left~LTR! or the right
~RTL! side of the stack. Thepj v

(k,l ) are the matrix elements o
the momentum operatorp̂ j v[2 i (c/ j v)d/dz, calculated
over the LTR and RTL modes using the standard me
^ f ug&[(1/L)*0

L f * (z)g(z)dz. d(2)(z) is a spatially depen-
dent, quadratic coupling function, andG ( j v,n)

(k,l ) are overlap
integrals.

As a first example, we consider a 1D PC whose details
given in the caption of Fig. 1. Layer thicknesses and mat
als can be chosen such that the FF field is tuned to the
transmission resonance near the first order band gap, an
©2003 The American Physical Society13-1
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SH field is tuned to the second transmission resonance
the second order band gap, as shown in inset~b! of Fig. 1.
Tuning in this fashion causes the SH field to be globa
phase matched with the FF field@4,5#, leading to enhanced
second harmonic generation~SHG! @5,6#.

We numerically integrated Eqs.~2! using a shooting pro-
cedure @8#. When both the input FF and SH fields a
present, the efficiency of the interaction depends on the r
tive phase differencedf between the input fields. In particu
lar, the FF transmitted and reflected components underg
amplification process that is enhanced fordf53p/41mp,
while deamplification takes place ifdf5p/41mp (m
50,1,2...). We choose the condition of maximum amplific
tion for the FF field,df53p/4, take the SH input intensity
I SH in the range 2–500 MW/cm2, and I FF50.1 W/cm2. Our
calculations show that the SH field always remains un
pleted to levels less than 0.1%. In Fig. 1 we show the refl
tion RFF, the transmissionTFF, and the phases of the F
field vs the SH input intensity. The figure shows that the
field displays a resonancelike dynamics by first increas
sharply by several orders of magnitude as a function of in
SH intensity, followed by an equally sharp decrease beg

FIG. 1. RFF5uAv
(2)(0)u2/uAv

(1)(0)u2 ~dashed line! and TFF

5uAv
(1)(L)u2/uAv

(1)(0)u2 ~solid line! vs SH input intensity. The ar-
row indicates the SH input intensity that leads to the inversion
the process.~a! Phase of the FF field upon reflection,f r

5arg@Av
(2)(0)/Av

(1)(0)# ~dashed line! and upon transmissionf t

5arg@Av
(1)(L)/Av

(1)(0)# ~solid line! vs SH input intensity.~b! Linear
transmittance vs normalized frequencyv/v0 , v052pc/l0 , l0

51 mm for a structure of total lengthL57.11mm composed of 59
alternating layers of 90 nm of air (nL51) and 150 nm of a qua
dratic dielectric material (d(2)5120 pm/V) whose indexes of re
fraction at the FF (l51.55mm) and SH frequency are, respe
tively, nH(v)53.342 and nH(2v)53.61. The arrows identify
tuning of the FF and SH fields, respectively. The spectral bandw
of the FF transmission resonance isDv'103 GHz, which corre-
sponds to a lifetime of approximately 5 ps.
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ning at about 170 MW/cm2. The reason for this decline i
that ap phase shift has occurred in both reflected and tra
mitted fields@see inset~a! of Fig. 1#, leading to a reversal o
energy flow in favor of the SH field.

The sort of dynamics just described, which includes ap
phase shift accompanied by the inversion of gain, is typi
of bulk x (2) materials under exact phase-matching conditio
@9#. In our case, however, the unique combination of stro
feedback, field localization, robust phase-matching con
tions, and gain produces the extreme circumstances
manifest themselves in the remarkable resonancelike be
ior shown in Fig. 1, which ultimately do not allow the SH t
become depleted. The reflection and the transmission of
FF field reach their maxima (I reflected;I transmitted

;0.1 MW/cm2) at the point of inversion of nonlinear gai
when I SH

(inv)>170 MW/cm2. In Fig. 2 we show typical local-
ization properties of the FF field inside the photonic ba
gap ~PBG! structure. The figure suggests that the FF fie
shape remains the same, an indication that no shifts of
resonances occur, and that the original phase-matching
ditions endure. In Fig. 3~a! we show the reflectionRFF and
the transmissionTFF, for the same structure of Fig. 1, bu
with d(2)530 pm/V. In Fig. 3~b! we present results for a
structure similar to that of Fig. 3~a!, but instead of air we use
a material withnL51.5.

Several points can now be made with the aid of the fi
ures.~i! A comparison between Figs. 1 and 3~a! shows that
the threshold SH input intensity necessary to invert the p
cess scales asI SH

(inv)'(1/d(2))2. This scaling law has been
tested and holds for other values ofd(2). ~ii ! Comparing
Figs. 3~a! and 3~b! reveals thatI SH

(inv) is also affected by the
index contrastdn5nH2nL : from 2.7 GW/cm2 in Fig. 3~a!
where dn>2.5 to I SH

(inv)>5.9 GW/cm2 when dn>2 in Fig.
3~b!. Clearly, the index contrast determines initial resonan
bandwidth, and therefore it changes the efficiency of the p
cess.~iii ! Figs. 1 and 3 show that the dynamics we ha
described is general, i.e., independent of any particu

f

th

FIG. 2. Absolute value squared of the FF field inside the P
structure, for different values of the input SH intensity.I SH

(input)

5(a) 50,~b! 110, ~c! 169, and~d! 200 MW/cm2.
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SLOWING LIGHT IN x (2) PHOTONIC CRYSTALS PHYSICAL REVIEW E68, 046613 ~2003!
choice of material or nonlinear coefficient. The specific m
terials one chooses determine a particularI SH

(inv) but leave un-
altered the shape of the curves in Figs. 1 and 3. In
structures, absorption and/or scattering losses may also i
ence the magnitude ofI SH

(inv) but will not negate the effect. A
detailed discussion of materials suitable for an experime
verification is beyond the scope of this article. Suffice it
say here that structures made of air/semiconductor mate
may be obtained by etching GaAs waveguides@10#. Struc-
tures similar to the one described in Fig. 3~b!, i.e.,
Al2O3(n;1.5)/GaAs(n;3.5), have also been fabricate
and tested for SHG under global phase-matching condit
@5# in the undepleted pump regime.

As outlined in Refs.@11,12#, the tunneling time of a quasi
monochromatic pulse that traverses a finite barrier is dire
proportional to the electromagnetic energy density sto
within the structure. Figure 2 thus suggests that the tunne
velocity of the FF pulse may be modulated by controlling t
SH intensity: the pulse slows down for intensities belo
I SH;170 MW/cm2, and it speeds up above this value. T
approach followed in Ref.@11# for linear interactions can be
generalized to the nonlinear case. We write the expres
for the energy velocityVv,E of a plane, quasimonochromati
FF wave of carrier frequencyv that traverses a barrier o
length L: Vv,E5@SW v(z5L1)• ẑ#/^Uv(z)&, where SW v(z
5L1) is the time-averaged Poynting vector calculated at
exit surfacez5L1, ẑ is the unit vector along the propagatio
direction of the transmitted field, andUv(z) is the time-
averaged electromagnetic energy density.^Uv(z)&
[(1/L)*0

LUv(z)dz denotes the spatial average of the ene
density over the barrier length. Using appropriate bound
conditions, it is straightforward to verify that the quanti
SW v(z5L1)• ẑ can be expressed as a function of the transm

FIG. 3. ~a! RFF ~dashed line! and TFF ~solid line! vs SH input
intensity. The structure is the same as that of Fig. 1, but withd(2)

530 pm/V. ~b! RFF ~dashed line! andTFF ~solid line! vs SH input
intensity. The structure is similar to that of~a!, except that the
low-index layers have an indexnL51.5. The arrows indicate the
SH input intensity that leads to the inversion of the process.
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sion TFF of the barrier and the amplitudeEv
(input) of the inci-

dent FF field in the following way: SW v(z5L1)• ẑ
5(«0c/2)uEv

(input)u2TFF ~for simplicity we assume that the
barrier is surrounded by air!. The final expression for the
energy velocity is Vv,E5TFF(L/tv), where tv

52*0
LUv(z)dz/(«0cuEv

(input)u2) is the tunneling time. One
may also define a group~or tunneling! velocity associated
with the delay of the transmitted pulse asVv,g5L/tv ,
which leads to the expressionVv,E5TFFVv,g . This expres-
sion has been derived with no particular restrictions on
FF beam as it traverses the barrier, and was derived
discussed at length for linear systems in Ref.@11#. It has been
experimentally verified in a coaxial photonic crystal@13#.
Here we just point out that placing the requirement that
ergy velocity should remain subluminal (Vv,E<c) leads di-
rectly to the conditionVv,g<c/TFF. In the caseTFF!1 ~as,
for example, when the input field is tuned in the gap of t
PC! superluminal tunneling velocities are readily accessi
@11,14#, while in the caseTFF@1, as in the present situation
extremely slow tunneling velocities are obtained.

The expression forUv(z) in the case of two linearly po-
larized, monochromatic plane waves at FF and SH freque
interacting in a quadratic material with no magnetization
@15#

Uv~z!5~«0/4!@Re~«v!uEvu21~c2/v2!udEv /dzu2

12d~2!uE2vuuEvu2cos~w2v22wv!#,

where«v is the relative dielectric constant, andf j v are the
phases of the fields. From the above expression, we ob
the tunneling time@16#:

tv5E
0

L

@Re~«v!uEvu21~c2/v2!udEv /dzu2

12d~2!uE2vuuEvu2cos~w2v22wv!#dz

Y ~2cuEv
~ input!u2!.

FIG. 4. Tunneling time~dashed line! and tunneling velocity
~solid line! of the FF transmitted field vs the SH input intensity f
the structure described in Fig. 1.
3-3
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tv is plotted in Fig. 4 as a function of SH input intensity fo
the structure described in Fig. 1. In the linear regime (I SH
→0), we have tv'5 ps, which corresponds toVv,g
'c/210, consistent with the lifetime associated with t
bandwidth of the transmission resonance@see inset~b! of
Fig. 1#. Increasing the input SH intensity causes a dram
increase oftv due to the amplification of the FF field: the S
provides approximately six orders of magnitude of gain
the FF, which proves crucial to the tunneling velocity of t
FF beam.

When gain inversion occurs (I SH'170 MW/cm2) the tun-
neling velocity is Vv,g5(L/tv)'11 m/s andtv'630 ns.
Consistent with the picture of equivalence of lifetime a
resonance bandwidth, the amplification process thus caus
dynamic, virtual narrowing of the resonance bandwid
by an amount proportional to the net gain, from 5
(;103 GHz) to 630 ns~;10 MHz!. Therefore, the presenc
of a SH field inside the structure creates a virtual state for
FF field which consists of a resonance bandwidth of onl
few megahertz, resolvable with pulses at least a few mic
seconds in duration. We note that in the structure of Fig. 3~a!
the minimum tunneling velocity ofVv,g'11 m/s is reached
for I SH'2.7 GW/cm2, while for the structure of Fig. 3~b! the
same tunneling velocity is reached forI SH'5.9 GW/cm2.
er
,

t.

on
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We have also performed calculations using the geom
described in Fig. 1 and pulses only a few tenths of picos
onds in duration. For amplification factors that do not exce
102, these pulses continue to resolve the resonances well
tunnel the structure approximately undistorted and dela
just as predicted by the tunneling time. Higher gain fact
cause picosecond pulses to become compressed in time
torted, and ultimately break up. Broader virtual resonan
that may be resolved with shorter pulses may be create
the expense of increased tunneling velocities. In fact, Fig
suggests that an intensity ofI SH'160 MW/cm2 would create
a virtual resonance approximately 1 GHz wide, resolva
with pulses only a few nanoseconds in duration, and yield
a tunneling velocity tunable down to approximately 10
m/s.

In summary, we have studied a method to achieve
control light confinement using a parametric dow
conversion process in a 1D PC. We conclude that extrem
small light velocities may more generally be associated,
may be more easily accessible, with any type of resona
phenomenon, with either classical or quantum origins.
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